Turbulence and gravity waves within an upper-level front
High-resolution dropwindsonde and in-flight measurements collected by a research aircraft during the Severe Clear-Air Turbulence Colliding with Aircraft Traffic ( SCATCAT) experiment and simulations from numerical models are analyzed for a clear-air turbulence event associated with an intense upper-level jet/frontal system. Spectral, wavelet, and structure function analyses performed with the 25-Hz in situ data are used to investigate the relationship between gravity waves and turbulence. Mesoscale dynamics are analyzed with the 20-km hydrostatic Rapid Update Cycle ( RUC) model and a nested 1-km simulation with the nonhydrostatic Clark-Hall ( CH) cloud-scale model.', Turbulence occurred in association with a wide spectrum of upward propagating gravity waves above the jet core. Inertia-gravity waves were generated within a region of unbalanced frontogenesis in the vicinity of a complex tropopause fold. Turbulent kinetic energy fields forecast by the RUC and CH models displayed a strongly banded appearance associated with these mesoscale gravity waves ( horizontal wavelengths of similar to 120-216 km). Smaller-scale gravity wave packets ( horizontal wavelengths of 1-20 km) within the mesoscale wave field perturbed the background wind shear and stability, promoting the development of bands of reduced Richardson number conducive to the generation of turbulence. The wavelet analysis revealed that brief episodes of high turbulent energy were closely associated with gravity wave occurrences. Structure function analysis provided evidence that turbulence was most strongly forced at a horizontal scale of 700 m.', Fluctuations in ozone measured by the aircraft correlated highly with potential temperature fluctuations and the occurrence of turbulent patches at altitudes just above the jet core, but not at higher flight levels, even though the ozone fluctuations were much larger aloft. These results suggest the existence of remnant fossil turbulence from earlier events at higher levels, and that ozone cannot be used as a substitute for more direct measures of turbulence. The findings here do suggest that automated turbulence forecasting algorithms should include some reliable measure of gravity wave activity.
document
http://n2t.net/ark:/85065/d7x92c38
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2005-11-01T00:00:00Z
Copyright 2005 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:27:55.412400