Prediction of axial asymmetry in Jovian magnetopause reconnection
We show the possible existence of a significant axial asymmetry in the reconnection separator at the Jovian magnetopause using first-principle, physics-based global simulations. Under eastward interplanetary magnetic field (IMF) conditions near Jupiter's orbit, reconnection occurs at the southern-dusk and northern magnetopause with large shear angles between the magnetospheric and magnetosheath magnetic fields. When driven by the westward IMF, the reconnection position switches to the northern-dusk and southern magnetopause. Component reconnection at the southern-dusk/northern-dusk magnetopause is associated with the interaction of the IMF with the nearly-dipolar background fields. Nearly-antiparallel reconnection near the noon-midnight plane at the northern/southern magnetopause is related to the dawn-dusk asymmetric, helical, closed lobe magnetic fields, which is a consequence of significant planetary corotation effects and not expected at Earth. Such configuration is testable as Juno has proceeded its orbit to the high-altitude cusps and provides new insight into the interpretation of measurements from other rotationally-driven systems.
document
https://n2t.org/ark:/85065/d7n301xk
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2023-05-16T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T15:17:59.031184