Identification

Title

The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes

Abstract

Global precipitation data sets with high spatial and temporal resolution are needed for many applications, but they were unavailable before the recent creation of several such satellite products. Here, we evaluate four different satellite data sets of hourly or 3-hourly precipitation (namely CMORPH, PERSIANN, TRMM 3B42 and a microwave-only product referred to as MI) by comparing the spatial patterns in seasonal mean precipitation amount, daily precipitation frequency and intensity, and the diurnal and semidiurnal cycles among them and with surface synoptic weather reports. We found that these high-resolution products show spatial patterns in seasonal mean precipitation amount comparable to other monthly products for the low- and mid-latitudes, and the mean daily precipitation frequency and intensity maps are similar among these pure satellite-based precipitation data sets and consistent with the frequency derived using weather reports over land. The satellite data show that spatial variations in mean precipitation amount come largely from precipitation frequency rather than intensity, and that the use of satellite infrared (IR) observations to improve sampling does not change the mean frequency, intensity and the diurnal cycle significantly. Consistent with previous studies, the satellite data show that sub-daily variations in precipitation are dominated by the 24-h cycle, which has an afternoon--evening maximum and mean-to-peak amplitude of 30-100% of the daily mean in precipitation amount over most land areas during summer. Over most oceans, the 24-h harmonic has a peak from midnight to early morning with an amplitude of 10-30% during both winter and summer. These diurnal results are broadly consistent with those based on the weather reports, although the time of maximum in the satellite precipitation is a few hours later (especially for TRMM and PERSIANN) than that in the surface observations over most land and ocean, and it is closer to the phase of showery precipitation from the weather reports. The TRMM and PERSIANN precipitation shows a spatially coherent time of maximum around 0300-0600 local solar time (LST) for a weak (amplitude <20%) semi-diurnal (12-h) cycle over most mid- to high-latitudes, comparable to 0400-0600 LST in the surface data. The satellite data also confirm the notion that the diurnal cycle of precipitation amount comes mostly from its frequency rather than its intensity over most low and mid-latitudes, with the intensity has only about half of the strength of the diurnal cycle in the frequency and amount. The results suggest that these relatively new precipitation products can be useful for many applications.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d73j3d6c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by Springer. Copyright 2007, Springer Berlin / Heidelberg

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T16:00:35.660264

Metadata language

eng; USA