Identification

Title

The impact of Stratospheric Aerosol Injection on extreme fire weather risk

Abstract

Stratospheric aerosol injection (SAI) would potentially be effective in limiting global warming and preserving large-scale temperature patterns; however, there are still gaps in understanding the impact of SAI on wildfire risk. In this study, extreme fire weather is assessed in an Earth system model experiment that deploys SAI beginning in 2035, targeting a global temperature increase of 1.5 degrees C above pre-industrial levels under a moderate warming scenario. After SAI deployment, increases in extreme fire weather event frequency from climate change are dampened over much of the globe, including the Mediterranean, northeast Brazil, and eastern Europe. However, SAI has little impact over the western Amazon and northern Australia and causes larger increases in extreme fire weather frequency in west central Africa relative to the moderate emissions scenario. Variations in the impacts of warming and SAI on moisture conditions on different time scales determine the spatiotemporal differences in extreme fire weather frequency changes, and are plausibly linked to changes in synoptic-scale circulation. This study highlights that regional and spatial heterogeneities of SAI climate effects simulated in a model are amplified when assessing wildfire risk, and that these differences must be accounted for when quantifying the possible benefit of SAI.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70v8hs9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:17:30.143416

Metadata language

eng; USA