Identification

Title

Large-scale dynamics moderate impact-relevant changes to organised convective storms

Abstract

Larger organised convective storms (mesoscale-convective systems) can lead to major flood events in Europe. Here we assess end-of-century changes to their characteristics in two convection-permitting climate simulations from the UK Met Office and ETH-Zurich that both use the high Representative Concentration Pathway 8.5 scenario but different approaches to represent atmospheric changes with global warming and different models. The UK Met Office projections indicate more frequent, smaller, and slower-moving storms, while ETH-Zurich projections show fewer, larger, and faster-moving storms. However, both simulations show increases to peak precipitation intensity, total precipitation volume, and temporal clustering, suggesting increasing risks from mesoscale-convective systems in the future. Importantly, the largest storms that pose increased flood risks are projected to increase in frequency and intensity. These results highlight that understanding large-scale dynamical drivers as well as the thermodynamical response of storms is essential for accurate projections of changes to storm hazards, needed for future climate adaptation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fn1b24

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-01-05T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:42.352763

Metadata language

eng; USA