Comparisons of transport and dispersion model predictions of the mock urban setting test field experiment
The potential effects of a terrorist attack involving the atmospheric release of chemical, biological, radiological, nuclear, or other hazardous materials continue to be of concern to the United States. The Defense Threat Reduction Agency has developed a Hazard Prediction Assessment Capability (HPAC) that includes initial features to address hazardous releases within an urban environment. Improved characterization and understanding of urban transport and dispersion are required to allow for more robust modeling. In 2001, a scaled urban setting was created in the desert of Utah using shipping containers, and tracer gases were released. This atmospheric tracer and meteorological study is known as the Mock Urban Setting Test (MUST). This paper describes the creation of sets of HPAC predictions and comparisons with the MUST field experiment. Strong consistency between the conclusions of this study and a previously reported HPAC evaluation that relied on urban tracer observations within the downtown area of Salt Lake City was found. For example, in both cases, improved predictions were associated with the inclusion of a simple empirically based urban dispersion model within HPAC, whereas improvements associated with the inclusion of a more computationally intensive wind field module were not found. The use of meteorological observations closest to the array and well above the obstacle array - the sonic anemometer measurements 16 m above ground level - resulted in predictions with the best fit to the observed tracer concentrations. The authors speculate that including meteorological observations or vertical wind profiles above or upwind of an urban region might be a sufficient input to create reasonable HPAC hazard-area predictions.
document
http://n2t.net/ark:/85065/d7vx0h63
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2006-10-01T00:00:00Z
Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:12:53.075355