Identification

Title

Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering

Abstract

This paper presents our effort to assimilate FORMOSAT-3/COSMIC (F3/C) GPS Occultation Experiment (GOX) observations into the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) by means of ensemble Kalman filtering (EnKF). The F3/C electron density profiles (EDPs) uniformly distributed around the globe which provide an excellent opportunity to monitor the ionospheric electron density structure. The NCAR TIE-GCM simulates the Earth's thermosphere and ionosphere by using self-consistent solutions for the coupled nonlinear equations of hydrodynamics, neutral and ion chemistry, and electrodynamics. The F3/C EDP are combined with the TIE-GCM simulations by EnKF algorithms implemented in the NCAR Data Assimilation Research Testbed (DART) open-source community facility to compute the expected value of electron density, which is ‘the best’ estimate of the current ionospheric state. Assimilation analyses obtained with real F3/C electron density profiles are compared with independent ground-based observations as well as the F3/C profiles themselves. The comparison shows the improvement of the primary ionospheric parameters, such as NmF2 and hmF2. Nevertheless, some unrealistic signatures appearing in the results and high rejection rates of observations due to the applied outlier threshold and quality control are found in the assimilation experiments. This paper further discusses the limitations of the model and the impact of ensemble member creation approaches on the assimilation results, and proposes possible methods to avoid these problems for future work.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h41s76

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-10-13T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:48:48.015849

Metadata language

eng; USA