Identification

Title

Timescale for detecting the climate response to stratospheric aerosol geoengineering

Abstract

Stratospheric aerosol geoengineering could be used to maintain global mean temperature despite increased atmospheric greenhouse gas (GHG) concentrations, for example, to meet a 1.5 or 2 degrees C target. While this might reduce many climate change impacts, the resulting climate would not be the same as one with the same global mean temperature due to lower GHG concentrations. The primary question we consider is how long it would take to detect these differences in a hypothetical deployment. We use a 20-member ensemble of stratospheric sulfate aerosol geoengineering simulations in which SO2 is injected at four different latitudes to maintain not just the global mean temperature, but also the interhemispheric and equator-to-pole gradients. This multiple-latitude strategy better matches the climate changes from increased GHG, while the ensemble allows us both to estimate residual differences even when they are small compared to natural variability and to estimate the statistics of variability. We first construct a linear emulator to predict the model responses for different scenarios. Under an RCP4.5 scenario in which geoengineering maintains a 1.5 degrees C target (providing end-of-century cooling of 1.7 degrees C), the projected changes in temperature, precipitation, and precipitation minus evaporation (P-E) at a grid-scale are typically small enough that in many regions the signal-to-noise ratio is still less than one at the end of this century; for example, for P-E, only 30% of the land area reaches a signal-to-noise ratio of one. These results provide some context for the projected magnitude of climate changes associated with a limited deployment of stratospheric aerosol cooling.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77h1nms

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-02-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:27.257046

Metadata language

eng; USA