Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations
The lowest model level height z1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z1 is within the surface layer. In this study, impacts of z1 on the performance of planetary boundary layer (PBL) parameterizations are investigated. Three conceptually different schemes in the Weather Research and Forecasting (WRF) model are tested for one complete diurnal cycle: the nonlocal, first-order Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2) schemes and the local, 1.5-order Mellor-Yamada-Janji (MYJ) scheme. Surface variables are sensitive to z1 in daytime when z1 is below 12 m, even though the height is within the surface layer. Meanwhile during nighttime, the variables are systematically altered as z1 becomes shallower from 40 m. PBL structures show the sensitivity in the similar manner, but weaker. The order of sensitivity among the three schemes is YSU, ACM2, and MYJ. The significant sensitivity of the YSU parameterization comes from the PBL height calculation. This is considerably alleviated by excluding the thermal excess term in determining the PBL height when z1 is within the surface layer. The factor that specifies the ratio of nonlocal transport to total mixing is critical to the sensitivity of the ACM2 scheme. The MYJ scheme has no systematic sensitivity, since it is a local scheme. It is also noted that a numerical instability appears accompanying the unrealistic PBL structures when the grid spacing in the surface layer suddenly jumps.
document
http://n2t.net/ark:/85065/d7bg2pp2
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-02-01T00:00:00Z
Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:53:03.147908