Identification

Title

Hydrologic model parameter estimation in ungauged basins using simulated SWOT discharge observations

Abstract

In situ gauge networks are often used in hydrologic model calibration, but these networks are limited or nonexistent in many regions. The upcoming Surface Water Ocean Topography (SWOT) mission promises to fill this observation gap by providing discharge estimates for rivers wider than 100 m. SWOT observation utility for model parameter selection in regions devoid of in situ gauges is assessed using proxy SWOT discharge estimates derived from an observing system simulation experiment and Monte Carlo methods. The sensitivity of the parameter selection to measurement error and observation frequency is also evaluated. Single- and multi-point parameter selection are performed for ten sub-basins within the Susitna and upper Tanana river basins in Alaska. SWOT is expected to observe Alaskan river points 4-7 times per 21-day repeat cycle with 120-km swath coverage. For an expected SWOT measurement error of 35%, parameter estimation is successful for 50% (90%) of sub-basins using single- (multi-) point parameter selection. Decreasing observation frequency to simulate lower latitudes resulted in success for only 10% of midlatitude and tropical sub-basins for single-point selection, whereas multi-point selection was successful in 80% (60%) of midlatitude (tropical) sub-basins. Single-point parameter selection is more sensitive to measurement error than multi-point parameter selection. The results strongly support the use of multi-point over single-point parameter selection, yielding robust results nearly independent of observation frequency. Most importantly, this study suggests SWOT can be used to successfully select hydrologic model parameters in basins without an in situ gauge network.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7np27w7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:32:57.400342

Metadata language

eng; USA