Identification

Title

Assessing convection permitting resolutions of WRF for the purpose of water resource impact assessment and vulnerability work: A southeast Australian case study

Abstract

Convective permitting simulations are increasingly pursued for providing physically more credible climate projections of rainfall. Their value is likely to be greater for regions where increased resolution not only resolves physical processes better, but also the topographic features of the target domain. Here, we assess the skill of convective permitting simulations to simulate rainfall for water resource assessment work in a climate change context for southeast Australia. Output on 2 and 10 km grid-length resolution from a 5-year regional climate model simulation is assessed for skill in simulating mean seasonal climatologies for days with low or high observed rainfall intensities. Comparison is conducted on spatial grids and for 25 catchments across the study region. No significant difference in skill was found in the loss differential when using absolute error for spatial fields of mean climatologies. Measures focusing on spatial similarity and accuracy in position of high rainfall areas indicate somewhat better skill in the 2 km simulation with regard to positioning (in autumn and winter), and with regard to spatial variability (in autumn and spring). Significant difference in skill was shown when comparing the simulated data sets on a catchment basis; seasonally 5–7 catchments in favor of the 10 km output and somewhat less for the 2 km output (3–6 catchments). When using correlation skill as the test measure, results are overwhelmingly in favor of the 2 km output. We cautiously suggest that results may be overly pessimistic for the 2 km simulation because of inadequate representation of rainfall in high altitude areas in observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7833ts1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:11:22.255760

Metadata language

eng; USA