Improving the radiance assimilation performance in estimating snow water storage across snow and land-cover types in North America
Continental-scale snow radiance assimilation (RA) experiments are conducted in order to improve snow estimates across snow and land-cover types in North America. In the experiments, the ensemble adjustment Kalman filter is applied and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature TB observations are assimilated into an RA system composed of the Community Land Model, version 4 (CLM4); radiative transfer models (RTMs); and the Data Assimilation Research Testbed (DART). The performance of two snowpack RTMs, the Dense Media Radiative Transfer–Multi-Layers model (DMRT-ML), and the Microwave Emission Model of Layered Snowpacks (MEMLS) in improving snow depth estimates through RA is compared. Continental-scale snow estimates are enhanced through RA by using AMSR-E TB at the 18.7- and 23.8-GHz channels [3% (DMRT-ML) and 2% (MEMLS) improvements compared to the cases using the 18.7- and 36.5-GHz channels] and by considering the vegetation single-scattering albedo ω [2.5% (DMRT-ML) and 4.8% (MEMLS) improvements compared to the cases neglecting ω]. The contribution of TB of the vegetation canopy to TB at the top of the atmosphere is better represented by considering ω in the RA system, and improvements in the resulting snow depth are evident for the forest land-cover type (about 5%-11%) and the taiga and alpine snow classes (about 5%-11% and 4%-8%, respectively), especially in the MEMLS case. Compared to the open-loop run (0.171-m snow depth RMSE), about 7% (DMRT-ML) and 10% (MEMLS) overall improvements of the RA performance are achieved.
document
http://n2t.net/ark:/85065/d7dr2x8z
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-03-01T00:00:00Z
Copyright 2017 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:10:43.606894