Identification

Title

Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx

Abstract

We quantify the relationship between Mount Pinatubo eruption in June 1991 and tropospheric ozone abundances. The ozone reduction in the stratosphere and troposphere following the eruption is simulated by the Whole Atmosphere Community Climate Model and is in good agreement with the ozonesonde observations. Simulated anomalies in the global stratosphere-troposphere flux of ozone following the eruption are well correlated with those in the tropospheric ozone column. Both are at their minimum in late 1992 to early 1993 (−70 Tgyr⁻¹ in January 1993 for the flux and −1.9 Dobson Unit in November 1992 for tropospheric ozone) and recover after 1995. Therefore, this study identifies the reduced stratosphere-to-troposphere ozone flux as an important driver of the ozone decline in the troposphere following the eruption. A large fraction (67%) of the decrease in the flux is compensated by an increase in tropospheric photochemical ozone production. While both the strength of the residual circulation and the decrease in stratospheric ozone reduce the stratospheric ozone flux, the ozone reduction is identified as the dominant cause.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gq6zn3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-10-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:47:59.771133

Metadata language

eng; USA