Identification

Title

Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique

Abstract

In this paper, a modified probability-matching technique is developed for ensemble-based quantitative precipitation forecasts (QPFs) associated with landfalling typhoons over Taiwan. The main features of this technique include a resampling of the ensemble realizations, a rainfall pattern adjustment, and a bias correction. Using this technique, a synthetic ensemble is created for the purpose of rainfall prediction from a large-size (32 members), low-resolution (36 km) ensemble and a small-size (8 members), high-resolution (4 km) ensemble. The rainfall pattern is adjusted based on the precipitation distribution of the 36- and 4-km ensembles. A bias-correction scheme is then applied to remove the known systematic bias from the resampled 4-km ensemble realizations as part of the probability-matching procedure. The modified probability-matching scheme is shown to substantially reduce or eliminate the intrinsic model rainfall bias and to provide better QPF guidance. The encouraging results suggest that this modified probability-matching technique is a useful tool for the QPF of the topography-enhanced typhoon heavy rainfall over Taiwan using ensemble forecasts at dual resolutions.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7s75h8c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:47:58.014755

Metadata language

eng; USA