Identification

Title

Diagnosing the influence of a receding snow boundary on simulated midlatitude cyclones using piecewise potential vorticity inversion

Abstract

Previous research has found a relationship between the equatorward extent of snow cover and low-level baroclinicity, suggesting a link between the development and trajectory of midlatitude cyclones and the extent of preexisting snow cover. Midlatitude cyclones are more frequent 50–350 km south of the snow boundary, coincident with weak maxima in the environmental Eady growth rate. The snow line is projected to recede poleward with increasing greenhouse gas emissions, possibly affecting the development and track of midlatitude cyclones during Northern Hemisphere winter. Detailed examination of the physical implications of a modified snow boundary on the life cycle of individual storms has, to date, not been undertaken. This study investigates the impact of a receding snow boundary on two cyclogenesis events using Weather Research and Forecasting Model simulations initialized with observed and projected future changes to snow extent as a surface boundary condition. Potential vorticity diagnosis of the modified cyclone simulations isolates how changes in surface temperature, static stability, and relative vorticity arising from the altered boundary affect the developing cyclone. We find that the surface warm anomaly associated with snow removal lowered heights near the center of the two cyclones investigated, strengthening their cyclonic circulation. However, the direct effect of snow removal is mitigated by the stability response and an indirect relative vorticity response to snow removal. Because of these opposing effects, it is suggested that the immediate effect of receding snow cover on midlatitude cyclones is likely minimal and depends on the stage of the cyclone life cycle.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h998hb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:30.351015

Metadata language

eng; USA