Identification

Title

Evolution of the Antarctic ice sheet over the next three centuries from an ISMIP6 model ensemble

Abstract

<p><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(0, 0, 0);display:inline !important;float:none;font-family:&quot;Open Sans&quot;, icomoon, sans-serif;font-size:16px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary effort of CMIP6 (Coupled Model Intercomparison Project–Phase 6) focusing on ice sheets, designed to provide an ensemble of process-based projections of the ice-sheet contribution to sea-level rise over the twenty-first century. However, the behavior of the Antarctic Ice Sheet beyond 2100 remains largely unknown: several instability mechanisms can develop on longer time scales, potentially destabilizing large parts of Antarctica. Projections of Antarctic Ice Sheet evolution until 2300 are presented here, using an ensemble of 16 ice-flow models and forcing from global climate models. Under high-emission scenarios, the Antarctic sea-level contribution is limited to less than 30&nbsp;cm sea-level equivalent (SLE) by 2100, but increases rapidly thereafter to reach up to 4.4&nbsp;m SLE by 2300. Simulations including ice-shelf collapse lead to an additional 1.1&nbsp;m SLE on average by 2300, and can reach 6.9&nbsp;m SLE. Widespread retreat is observed on that timescale in most West Antarctic basins, leading to a collapse of large sectors of West Antarctica by 2300 in 30%–40% of the ensemble. While the onset date of retreat varies among ice models, the rate of upstream propagation is highly consistent once retreat begins. Calculations of sea-level contribution including water density corrections lead to an additional ∼10% sea level and up to 50% for contributions accounting for bedrock uplift in response to ice loading. Overall, these results highlight large sea-level contributions from Antarctica and suggest that the choice of ice sheet model remains the leading source of uncertainty in multi-century projections.</span></p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d73j3j8x

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:58:54.309566

Metadata language

eng; USA