Identification

Title

Causes and probability of occurrence of extreme precipitation events like Chennai 2015

Abstract

Unprecedented high-intensity flooding induced by extreme precipitation was reported over Chennai in India during November-December of 2015, which led to extensive damage to human life and property. It is of utmost importance to determine the odds of occurrence of such extreme floods in the future, and the related climate phenomena, for planning and mitigation purposes. Here, a suite of simulations from GFDL high-resolution coupled climate models are used to investigate the odds of occurrence of extreme floods induced by extreme precipitation over Chennai and the role of radiative forcing and/or large-scale SST forcing in enhancing the probability of such events in the future. The climate of twentieth-century experiments with large ensembles suggest that the radiative forcing may not enhance the probability of extreme floods over Chennai. Doubling of CO2 experiments also fails to show evidence for an increase of such events in a global warming scenario. Further, this study explores the role of SST forcing from the Indian and Pacific Oceans on the odds of occurrence of Chennai-like floods. Neither El Nino nor La Nina enhances the probability of extreme floods over Chennai. However, a warm Bay of Bengal tends to increase the odds of occurrence of extreme Chennai-like floods. In order to trigger a Chennai like-flood, a conducive weather event, such as a tropical depression over the Bay of Bengal with strong transport of moisture from a moist atmosphere over the warm Bay, is necessary for the intense precipitation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ms3wh8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:18:50.998412

Metadata language

eng; USA