Identification

Title

Limits on the efficacy of wave‐particle interaction on the energization and transport of atomic and molecular heavy ionospheric ions

Abstract

Ionospheric molecular ions, such as , NO + , and , have been observed in Earth's high‐altitude ionosphere and the magnetosphere by several spacecraft missions. Their presence not only indicates that they obtain sufficient energy through effective energization mechanisms, predominantly during the geomagnetically active times, but also provides clues regarding the connection between the ionosphere and the lower thermosphere. It is, however, unknown to date which physical processes are responsible for the transport and energization of molecular ions, as well as their relative contributions to the plasma surrounding the near‐Earth region. In this study, we employ the Seven Ion Polar Wind Outflow Model (7iPWOM) and examine the properties of molecular , NO + , and upflows and outflows in response to wave activity. The 7iPWOM is a hybrid polar wind model which solves the transport of e − , H + , He + , N + , O + , , NO + , and , using a combination of hydrodynamics and kinetic particle‐in‐cell (PIC) approaches. This approach enables the inclusion of Wave‐Particle Interaction (WPI) and Coulomb collisions, necessary to resolve the transport and acceleration of heavier species. The results suggest that the molecular ions are more sensitive to the wave spectrum than other ion species and exhibit a “valve” effect, meaning that a threshold wave energy is required to loft the molecular ions against the Earth's gravitational potential. Additionally, due to the limited supply of molecular ions from the ionosphere, the composition of ionospheric plasma is the primary controlling factor that regulates the abundance of molecular ion upflows and outflows.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7jq15d5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:43.581955

Metadata language

eng; USA