Impacts of Atlantic multidecadal variability on the tropical Pacific: A multi-model study
Atlantic multidecadal variability (AMV) has been linked to the observed slowdown of global warming over 1998-2012 through its impact on the tropical Pacific. Given the global importance of tropical Pacific variability, better understanding this Atlantic-Pacific teleconnection is key for improving climate predictions, but the robustness and strength of this link are uncertain. Analyzing a multi-model set of sensitivity experiments, we find that models differ by a factor of 10 in simulating the amplitude of the Equatorial Pacific cooling response to observed AMV warming. The inter-model spread is mainly driven by different amounts of moist static energy injection from the tropical Atlantic surface into the upper troposphere. We reduce this inter-model uncertainty by analytically correcting models for their mean precipitation biases and we quantify that, following an observed 0.26 degrees C AMV warming, the equatorial Pacific cools by 0.11 degrees C with an inter-model standard deviation of 0.03 degrees C.
document
http://n2t.net/ark:/85065/d7445qw0
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-12-01T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:30:35.686538