Identification

Title

Assimilation of GNSS PWV with NCAR-RTFDDA to improve prediction of a landfall typhoon

Abstract

Precipitable water vapor (PWV) retrieved from ground-based global navigation satellite system (GNSS) stations acquisition signal of a navigation satellite system provides high spatial and temporal resolution atmospheric water vapor. In this paper, an observation-nudging-based real-time four-dimensional data assimilation (RTFDDA) approach was used to assimilate the PWV estimated from GNSS observation into the WRF (Weather Research and Forecasting) modeling system. A landfall typhoon, "Mangkhut", is chosen to evaluate the impact of GNSS PWV data assimilation on its track, intensity, and precipitation prediction. The results show that RTFDDA can assimilate GNSS PWV data into WRF to improve the water vapor distribution associated with the typhoon. Assimilating the GNSS PWV improved the typhoon track and intensity prediction when and after the typhoon made landfall, correcting a 5-10 hPa overestimation (too deep) of the central pressure of the typhoon at landfall. It also improved the occurrence and the intensity of the major typhoon spiral rainbands.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7jq14k0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:34:27.252250

Metadata language

eng; USA