Identification

Title

Assimilation of a coordinated fleet of uncrewed aircraft system observations in complex terrain: Observing system experiments

Abstract

Uncrewed aircraft system (UAS) observations from the Lower Atmospheric Profiling Studies at Elevation-A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE) field campaign were assimilated into a high-resolution configuration of the Weather Research and Forecasting (WRF) Model. The impact of assimilating targeted UAS observations in addition to surface observations was compared to that obtained when assimilating surface observations alone using observing system experiments (OSEs) for a terrain-driven flow case and a convection initiation (CI) case observed within Colorado's San Luis Valley (SLV). The assimilation of UAS observations in addition to surface observations results in a clear increase in skill for both flow regimes over that obtained when assimilating surface observations alone. For the terrain-driven flow case, the UAS observations improved the representation of thermal stratification across the northern SLV, which produced stronger upvalley flow over the eastern half of the SLV that better matched the observations. For the CI case, the UAS observations improved the representation of the pre-convective environment by reducing dry biases across the SLV and over the surrounding terrain. This led to earlier CI and more organized convection over the foothills that spilled outflows into the SLV, ultimately helping to increase low-level convergence and CI there. In addition, the importance of UAS capturing an outflow that originated over the Sangre de Cristo Mountains and triggered CI is discussed. These outflows and subsequent CI were not well captured in the simulation that assimilated surface observations alone. Observations obtained with a fleet of UAS are shown to notably improve high-resolution analyses and short-term predictions of two very different mesogamma-scale weather events.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7639tk0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:21.926946

Metadata language

eng; USA