Identification

Title

Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM)

Abstract

Under hydrostatic equilibrium, a typical assumption used in global thermosphere ionosphere models, the pressure gradient in the vertical direction is exactly balanced by the gravity force. Using the non-hydrostatic Global Ionosphere Thermosphere Model (GITM), which solves the complete vertical momentum equation, the primary characteristics of non-hydrostatic effects on the upper atmosphere are investigated. Our results show that after a sudden intense enhancement of high-latitude Joule heating, the vertical pressure gradient force can locally be 25% larger than the gravity force, resulting in a significant disturbance away from hydrostatic equilibrium. This disturbance is transported from the lower altitude source region to high altitudes through an acoustic wave, which has been simulated in a global circulation model for the first time. Due to the conservation of perturbation energy, the magnitude of the vertical wind perturbation increases with altitude and reaches 150 (250) m/s at 300 (430) km during the disturbance. The upward neutral wind lifts the atmosphere and raises the neutral density at high altitudes by more than 100%. These large vertical winds are not typically reproduced by hydrostatic models of the thermosphere and ionosphere. Our results give an explanation of the cause of such strong vertical winds reported in many observations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d73t9hfs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-01-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T16:00:03.412752

Metadata language

eng; USA