Identification

Title

Linear analysis and nonlinear evolution of two‐dimensional global magnetohydrodynamic instabilities in a diffusive tachocline

Abstract

We develop a more realistic two-dimensional model for global MHD instabilities in the solar tachocline, by including diffusion in the form of kinetic and magnetic drag ( following Newton's cooling law formulation). This instability has previously been studied by us and others for an idealized tachocline with no kinematic viscosity and magnetic diffusivity. Since radial diffusion is more important than latitudinal diffusion in the thin solar tachocline, diffusive decay of flow and magnetic fields can be considered as proportional to those variables. We find that, for solar-like toroidal magnetic fields of similar to100 kG, instability exists for a wide range of kinetic and magnetic drag parameters, providing a mechanism for enhanced angular momentum transport in latitudes, which could explain how thin the solar tachocline is. From a detailed parameter space survey, we set upper limits of 5 x 10(11) and 3 x 10(10) cm(2) s(-1) for kinematic viscosity and magnetic diffusivity, respectively, such that this instability occurs in the solar tachocline on a timescale shorter than a sunspot cycle. We find that magnetic drag has much more influence than kinetic drag in damping this instability. This happens because the sink due to magnetic drag dissipates perturbation magnetic energy faster than the vorticity sink from kinetic drag dissipates perturbation kinetic energy. Consequently, in the presence of a large enough magnetic drag, the nonsolar-like clamshell pattern, found by Cally to be an inevitable final state of a broad profile undergoing an ideal MHD tachocline instability, is suppressed, whereas a banded profile still tips with no reduction in tip angle. We discuss how tipping may affect various surface manifestations of magnetic features, such as the latitudes and orientations of bipolar active regions.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kd21q4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2004-07-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2004 The American Astronomical Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:20:05.355369

Metadata language

eng; USA