Identification

Title

The signature of internal variability in the terrestrial carbon cycle

Abstract

Uncertainty in model initial states produces uncertainty in climate simulations because of unforced variability internal to the climate system. Climate scientists use initial-condition ensembles to separate the forced signal of climate change from the unforced internal variability. Our analysis of an 11-member initial-condition ensemble from the Community Earth System Model Version 2 that spans the period 1850-2014 shows that a similar ensemble approach is needed to robustly assess trends in the terrestrial carbon cycle. Uncertainty in model initialization gives rise to internal variability that masks trends in carbon fluxes, and also creates spurious unforced trends, during the period 1960-2014 across North America, meaning that a single model realization can diverge from the observational record or from other models simply because of random behavior. The forced response is, however, evident in the ensemble mean and emerges from the noise of unforced variability at decadal timescales. Our results suggest that trends in the observational record must be interpreted with caution because of multiple possible histories that would have been observed if the sequence of internal variability had unfolded differently. Furthermore, internal variability produces irreducible uncertainty in the carbon cycle, leading to ambiguity in the magnitude and sign of carbon cycle trends, especially at small spatial scales and short timescales. The small spread in initial land carbon pools at 1850 suggests that internal climate variability arising from atmospheric and oceanic initialization, not the biogeochemical initialization, is the predominant cause of carbon cycle variability among ensemble members. Initial-condition ensembles with other Earth system models are needed to develop a multi-model understanding of internal variability in the terrestrial carbon cycle.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70k2cxd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:06.409965

Metadata language

eng; USA