Identification

Title

Fire aerosols slow down the global water cycle

Abstract

Fire is an important Earth system process and the largest source of global primary carbonaceous aerosols. Earlier studies have focused on the influence of fire aerosols on radiation, surface climate, air quality, and biogeochemical cycle. The impact of fire aerosols on the global water cycle has not been quantified and related mechanisms remain largely unclear. This study provides the first quantitative assessment and understanding of the influence of fire aerosols on the global water cycle. This is done by quantifying the difference between simulations with and without fire aerosols using the coupled Community Earth System Model (CESM). Results show that present-day fire aerosols weaken the global water cycle significantly. They decrease the continental precipitation, evapotranspiration, and runoff by 4.1 +/- 1.8, 2.5 +/- 0.5, and 1.5 +/- 1.4 x10(3) km(3) yr(-1) as well as ocean evaporation, precipitation, and water vapor transport from ocean to land by 8.1 +/- 1.9, 6.6 +/- 2.3, and 1.5 +/- 1.4 x10(3) km(3) yr(-1). The impacts of fire aerosols are most clearly seen in the tropics and the Arctic-boreal zone. Fire aerosols affect the global water cycle mainly by cooling the surface, which reduces ocean evaporation, land soil evaporation, and plant transpiration. The decreased water vapor load in the atmosphere leads to a decrease in precipitation, which contributes to reduced surface runoff and subsurface drainage.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kd22r0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-11-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:22.933044

Metadata language

eng; USA