Identification

Title

Ionospheric modulation by EMIC wave-driven proton precipitation: Observations and simulations

Abstract

Protons of tens of keV can be resonantly scattered by electromagnetic ion cyclotron (EMIC) waves excited in the magnetosphere, resulting in proton precipitation down to the upper atmosphere. In this study, we report for the first time the ionospheric height-dependent ionization in response to EMIC-associated isolated proton aurora (IPA) using simultaneous space-borne and ground-based measurements. On 06 March 2019, the Polar Orbiting Environmental Satellites observed significant proton precipitation in the dusk sector (MLT similar to 19), while ground-based magnetometers detected a clear signature of EMIC waves. Meanwhile, the conjugated all sky imager captured an IPA and the nearby Poker Flat incoherent scatter radar (PFISR) showed enhanced electron density in the E region, suggesting a potential consequence of the EMIC wave-driven proton precipitation. The Global Airglow model simulations confirmed the dominant impact of proton precipitation on the ionosphere and agreed well with PFISR observations. This study confirmed physical links from the magnetosphere to the ionosphere through EMIC-driven proton precipitation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7n58rj2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-01-24T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:55:10.652765

Metadata language

eng; USA