Identification

Title

The essential role of local context in shaping risk and risk reduction strategies for snowmelt-dependent irrigated agriculture

Abstract

Climate change-induced shifts in snow storage and snowmelt patterns pose risks for adverse impacts to people, the environment, and irrigated agriculture. Existing research primarily focuses on evaluating these risks to irrigated agriculture at large scales, overlooking the role of local context in shaping risk dynamics. Consequently, many "at-risk" areas lack insight into how adaptation strategies for managing risk through water supply augmentation or water conservation vary across contexts and over time. To address this gap, we develop a comprehensive index for evaluating irrigated agriculture's risk and adaptation potential to changes in snow at local scales and apply it throughout the western US. Results confirm trends toward escalating risk for changes in snow storage and snowmelt patterns over the century. However, substantial heterogeneity in the extent and drivers of risk exists due to variability in localized interactions between declines in water supply (approximately -9% +/- 13% by 2100) and increased agricultural demand (approximately 7% +/- 5% by 2100). Despite an existing focus on supply augmentation as a critical adaptation strategy to reduce risk, we show its effectiveness diminishes for many areas over time, declining to an average of -54% of historical augmentation potential by 2100. Conserving water through historical changes in crop acreage and type emerges as a more stable adaptation measure, reducing demand by 7%-8% regardless of time. While particularly relevant for higher elevation, less intensive agricultural settings in snowmelt-dependent regions, findings underscore the need for strategies that support local-scale, context-appropriate adaptation to effectively manage escalating risk as snow changes.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7m049px

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:01:36.111856

Metadata language

eng; USA