Identification

Title

Evaluating large-storm dominance in high-resolution GCMs and observations across the western contiguous United States

Abstract

Extreme precipitation events are projected to increase in frequency across much of the land-surface as the global climate warms, but such projections have typically relied on coarse-resolution (100-250 km) general circulation models (GCMs). The ensemble of HighResMIP GCMs presents an opportunity to evaluate how a more finely resolved atmosphere and land-surface might enhance the fidelity of the simulated contribution of large-magnitude storms to total precipitation, particularly across topographically complex terrain. Here, the simulation of large-storm dominance, that is, the number of wettest days to reach half of the total annual precipitation, is quantified across the western United States (WUS) using four GCMs within the HighResMIP ensemble and their coarse resolution counterparts. Historical GCM simulations (1950-2014) are evaluated against a baseline generated from station-observed daily precipitation (4,803 GHCN-D stations) and from three gridded, observationally based precipitation data sets that are coarsened to match the resolution of the GCMs. All coarse-resolution simulations produce less large-storm dominance than in observations across the WUS. For two of the four GCMs, bias in the median large-storm dominance is reduced in the HighResMIP simulation, decreasing by as much as 62% in the intermountain west region. However, the other GCMs show little change or even an increase (+28%) in bias of median large-storm dominance across multiple sub-regions. The spread in differences with resolution amongst GCMs suggests that, in addition to resolution, model structure and parameterization of precipitation generating processes also contribute to bias in simulated large-storm dominance.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d71r6vrh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:01:31.475658

Metadata language

eng; USA