Identification

Title

Revisiting the reanalysis-model discrepancy in Southern Hemisphere winter storm track trends

Abstract

<p><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(34, 34, 34);display:inline !important;float:none;font-family:-apple-system, BlinkMacSystemFont, &quot;Segoe UI&quot;, Roboto, Oxygen-Sans, Ubuntu, Cantarell, &quot;Helvetica Neue&quot;, sans-serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">Southern Hemisphere (SH) storminess has increased in the satellite era and recent work suggests comprehensive climate models significantly underestimate the trend. Here, we revisit this reanalysis-model trend discrepancy to better understand the mechanisms underlie it. A comprehensive like-for-like analysis shows reanalysis trends exhibit large uncertainty, and coupled climate model simulations exhibit weaker trends than most but not all reanalyses. However, simulations with prescribed sea surface temperature (SST) exhibit significantly greater storminess trends, particularly in the South Pacific, implying SST trend discrepancies in coupled simulations impact storminess trends. Using pacemaker simulations that correct Southern Ocean and tropical east Pacific SST trend discrepancies, we show that storminess trends in coupled simulations are underestimated because they do not capture the enhanced storminess resulting from Southern Ocean cooling and La-Nina-like teleconnection trends. Our findings emphasize large reanalysis uncertainty in SH circulation trends and the impact of regional SST trend discrepancies on circulation trends.</span></p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d75q51c5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:56:41.829052

Metadata language

eng; USA