Identification

Title

Accuracy of scaled GRACE terrestrial water storage estimates

Abstract

We assess the accuracy of global-gridded terrestrial water storage (TWS) estimates derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites. The TWS data set has been corrected for signal modification due to filtering and truncation. Simulations of terrestrial water storage variations from land-hydrology models are used to infer relationships between regional time series representing different spatial scales. These relationships, which are independent of the actual GRACE data, are used to extrapolate the GRACE TWS estimates from their effective spatial resolution (length scales of a few hundred kilometers) to finer spatial scales (~100 km). Gridded, scaled data like these enable users who lack expertise in processing and filtering the standard GRACE spherical harmonic geopotential coefficients to estimate the time series of TWS over arbitrarily shaped regions. In addition, we provide gridded fields of leakage and GRACE measurement errors that allow users to rigorously estimate the associated regional TWS uncertainties. These fields are available for download from the GRACE project website (available at http://grace.jpl.nasa.gov). Three scaling relationships are examined: a single gain factor based on regionally averaged time series, spatially distributed (i.e., gridded) gain factors based on time series at each grid point, and gridded-gain factors estimated as a function of temporal frequency. While regional gain factors have typically been used in previously published studies, we find that comparable accuracies can be obtained from scaled time series based on gridded gain factors. In regions where different temporal modes of TWS variability have significantly different spatial scales, gain factors based on the first two methods may reduce the accuracy of the scaled time series. In these cases, gain factors estimated separately as a function of frequency may be necessary to achieve accurate results.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7st7qhm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-04-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:52:56.497807

Metadata language

eng; USA