Robust detection of forced warming in the presence of potentially large climate variability
Climate warming is unequivocal and exceeds internal climate variability. However, estimates of the magnitude of decadal-scale variability from models and observations are uncertain, limiting determination of the fraction of warming attributable to external forcing. Here, we use statistical learning to extract a fingerprint of climate change that is robust to different model representations and magnitudes of internal variability. We find a best estimate forced warming trend of 0.8 degrees C over the past 40 years, slightly larger than observed. It is extremely likely that at least 85% is attributable to external forcing based on the median variability across climate models. Detection remains robust even when evaluated against models with high variability and if decadal-scale variability were doubled. This work addresses a long-standing limitation in attributing warming to external forcing and opens up opportunities even in the case of large model differences in decadal-scale variability, model structural uncertainty, and limited observational records.
document
http://n2t.net/ark:/85065/d7zs3109
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-10-22T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:15:50.570318