Identification

Title

Improving wind predictions in the marine atmospheric boundary layer through parameter estimation in a single-column model

Abstract

A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly because of a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study the WRF single-column model (SCM) is coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART) to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining , the time-varying sea surface roughness length, four WRF-SCM/DART experiments are conducted during the October-December 2006 period. The two methods for determining are the default Fairall-adjusted Charnock formulation in WRF and use of the parameter estimation techniques to estimate in DART. Using DART to estimate is found to reduce 1-h forecast errors of wind speed over the Charnock–Fairall ensembles by 4%-22%. However, parameter estimation of does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7tx3h41

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:52:17.979739

Metadata language

eng; USA