Which combinations of environmental conditions and microphysical parameter values produce a given orographic precipitation distribution?
This study applies an idealized modeling framework, alongside a Bayesian Markov chain Monte Carlo (MCMC) algorithm, to explore which combinations of upstream environmental conditions and cloud microphysical parameter values can produce a particular precipitation distribution over an idealized two-dimensional, bell-shaped mountain. Simulations focus on orographic precipitation produced when an atmospheric river interacts with topography. MCMC-based analysis reveals that different combinations of parameter values produce a similar precipitation distribution, with the most influential parameters being relative humidity (RH), horizontal wind speed (U), surface potential temperature (theta (sfc)), and the snow fall speed coefficient (A(s)). RH, U, and A(s) exhibit interdependence: changes in one or more of these factors can be mitigated by compensating changes in the other(s) to produce similar orographic precipitation rates. The results also indicate that the parameter sensitivities and relationships can vary for spatial subregions and given different environmental conditions. In particular, high theta (sfc) values are more likely to produce the target precipitation rate and spatial distribution, and thus the ensemble of simulations shows a preference for liquid precipitation at the surface. The results presented here highlight the complexity of orographic precipitation controls, and have implications for flood and water management, observational efforts, and climate change.
document
http://n2t.net/ark:/85065/d71n84jv
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-02-01T00:00:00Z
Copyright 2021 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:28:39.860299