Identification

Title

A comparison of water and carbon dioxide exchange at a windy alpine tundra and subalpine forest site near Niwot Ridge, Colorado

Abstract

Eddy covariance measurements of the surface energy balance and carbon dioxide exchange above high-elevation (3,480 m above sea level) alpine tundra located near Niwot Ridge, Colorado, were compared to simultaneous measurements made over an adjacent subalpine forest over two summers and one winter, from June 9, 2007 to July 3, 2008. The surface energy balance closure at the alpine site averaged 71 and 91%, winter and summer, respectively, due to the high wind speeds, short turbulent flux footprint, and relatively flat ridge-top location of the measurement site. Throughout the year, the alpine site was cooler with higher relative humidity, and had a higher horizontal wind speed, especially in winter, compared to the forest site. Wind direction was persistently downslope at the alpine site (summer and winter, day and night), whereas upslope winds were common at the forest site during summer daytime periods. The latent and sensible heat fluxes were consistently larger in magnitude at the forest site, with the largest differences during summer. The horizontal advective flux of CO₂ at the alpine site averaged 6% of the net ecosystem exchange (NEE) during summer nights (5% during summer daytime), and was small in relation to the high wind speeds, relatively flat site, and weak sources of CO₂ upwind of the site. The magnitudes and diurnal behavior of the alpine NEE calculated using three methods; eddy-covariance, friction velocity filter, and with advection and storage calculations, gave similar results. The period of net CO₂ uptake (negative NEE) was 100 days at the alpine site with a net uptake of 16 g C m⁻&sup2, compared to 208 days at the forest site with a net uptake of 108 g C m⁻

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7bc40k5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2009-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by Springer. Copyright Springer Science+Business Media B.V. 2009.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:56:34.668341

Metadata language

eng; USA