Identification

Title

Impact of mass–size parameterizations of frozen hydrometeors on microphysical retrievals: Evaluation by matching radar to in situ observations from GCPEx and OLYMPEx

Abstract

This article illustrates how multifrequency radar observations can refine the mass-size parameterization of frozen hydrometeors in scattering models and improve the correlation between the radar observations and in situ measurements of microphysical properties of ice and snow. The data presented in this article were collected during the GPM Cold Season Precipitation Experiment (GCPEx) (2012) and Olympic Mountain Experiment (OLYMPEx) (2015) field campaigns, where the true mass-size relationship was not measured. Starting from size and shape distributions of ice particles measured in situ, scattering models are used to simulate an ensemble of reflectivity factors for various assumed mass-size parameterizations (MSP) of the power-law type. This ensemble is then collocated to airborne and ground-based radar observations, and the MSPs are refined by retaining only those that reproduce the radar observations to a prescribed level of accuracy. A versatile "retrieval dashboard'' is built to jointly analyze the optimal MSPs and associated retrievals. The analysis shows that the optimality of an MSP depends on the physical assumptions made in the scattering simulators. This work confirms also the existence of a relationship between parameters of the optimal MSPs. Through the MSP optimization, the retrievals of ice water content M and mean diameter D-m seem robust to the change in meteorological regime (between GCPEx andOLYMPEx); whereas the retrieval of the diameter spread S-m seems more campaign dependent.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dj5jzf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:32:09.548608

Metadata language

eng; USA