Identification

Title

An assessment of dropsonde sampling strategies for Atmospheric River Reconnaissance

Abstract

During a 6-day intensive observing period in January 2021, Atmospheric River Reconnaissance (AR Recon) aircraft sampled a series of atmospheric rivers (ARs) over the northeastern Pacific that caused heavy precipitation over coastal California and the Sierra Nevada. Using these observations, data denial experiments were conducted with a regional modeling and data assimilation system to explore the impacts of research flight frequency and spatial resolution of dropsondes on model analyses and forecasts. Results indicate that dropsondes significantly improve the representation of ARs in the model analyses and positively impact the forecast skill of ARs and quantitative precipitation forecasts (QPF), particularly for lead times . 1 day. Both reduced mission frequency and reduced dropsonde horizontal resolution degrade forecast skill. On the other hand, experiments that assimilated only G -IV data and experiments that assimilated both G -IV and C-130 data show better forecast skill than experiments that only assimilated C-130 data, suggesting that the additional information provided by G -IV data is necessary for improving forecast skill. Although this is a case study, the 6-day period studied encompassed multiple AR events that are representative of typical AR behavior. Therefore, the results indicate that future operational AR Recon missions incorporate daily mission or back-to-back flights, maintain current dropsonde spacing, support high-resolution data transfer capacity on the C -130s, and utilize G -IV aircraft in addition to C -130s.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72b936j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:03:55.344978

Metadata language

eng; USA