Identification

Title

The extratropical tropopause inversion layer: Global observations with GPS data, and a radiative forcing mechanism

Abstract

Global characteristics of the extratropical tropopause inversion layer identified in radiosonde observations by Birner are studied using high vertical resolution temperature profiles from GPS radio occultation measurements. The GPS data are organized according to the height of the thermal tropopause in each profile, and a temperature inversion layer above the tropopause (with an average magnitude of 3--5 K) is found to be a ubiquitous, climatological feature. The GPS data show that the inversion layer is present for all seasons in both hemispheres, spanning the subtropics to the pole, and there is not strong longitudinal structure. Dependence of the inversion layer on upper-troposphere vorticity is studied; while anticyclones exhibit a substantially stronger inversion than cyclones (as expected from balanced dynamics), the inversion is evident for all circulation types. Radiative transfer calculations indicate that strong gradients in both ozone and water vapor near the tropopause contribute to the inversion. Significant absorption of both longwave and shortwave radiation by ozone occurs, warming the region above the tropopause. Water vapor near and immediately above the tropopause contributes to cooling, effectively enhancing the inversion.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72f7npq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T16:00:37.112614

Metadata language

eng; USA