Identification

Title

Reducing aerosol forcing uncertainty by combining models with satellite and within‐the‐atmosphere observations: A three‐way street

Abstract

Aerosol forcing uncertainty represents the largest climate forcing uncertainty overall. Its magnitude has remained virtually undiminished over the past 20 years despite considerable advances in understanding most of the key contributing elements. Recent work has produced modest increases only in the confidence of the uncertainty estimate itself. This review summarizes the contributions toward reducing the uncertainty in the aerosol forcing of climate made by satellite observations, measurements taken within the atmosphere, as well as modeling and data assimilation. We adopt a more measurement-oriented perspective than most reviews of the subject in assessing the strengths and limitations of each; gaps and possible ways to fill them are considered. Currently planned programs supporting advanced, global-scale satellite and surface-based aerosol, cloud, and precursor gas observations, climate modeling, and intensive field campaigns aimed at characterizing the underlying physical and chemical processes involved, are all essential. But in addition, new efforts are needed: (a) to obtain systematic aircraft in situ measurements capturing the multi-variate probability distribution functions of particle optical, microphysical, and chemical properties (and associated uncertainty estimates), as well as co-variability with meteorology, for the major aerosol airmass types; (b) to conceive, develop, and implement a suborbital (aircraft plus surface-based) program aimed at systematically quantifying the cloud-scale microphysics, cloud optical properties, and cloud-related vertical velocities associated with aerosol-cloud interactions; and (c) to focus much more research on integrating the unique contributions of satellite observations, suborbital measurements, and modeling, to reduce the persistent uncertainty in aerosol climate forcing.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7k35znf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:32:51.656167

Metadata language

eng; USA