Identification

Title

A fast linear semi-Lagrangian advection scheme coupled with spectral (bin) microphysics to simulate an idealized super cell storm in WRF

Abstract

A new, computationally efficient semi-Lagrangian advection (SLA) scheme was used to simulate an idealized supercell storm using WRF coupled with spectral (bin) microphysics (SBM). SLA was developed to make complicated microphysical schemes more computationally accessible to cloud-resolving models. The SLA is a linear combination of semi-Lagrangian schemes of the first and the second order. It has relatively low numerical diffusion, a high level of mass conservation accuracy, and preserves the sum of multiple advected variables. In addition to idealized tests, comparisons were made with standard WRF higher-order, nonlinear advection schemes. Tests of the SLA were performed using different values of weighting coefficients gamma for the combination of the first- and second-order components. The results of SLA on grids of 1 km, 500 m, and 250 m agree well with those of the standard WRF advection schemes, with results most similar to simulations with 250-m grid spacing. At the same time, the advection CPU time required by the SLA was 2.2-3 times shorter than the WRF advection schemes. The speed-up occurred in part because of the utilization of the same advection matrix for the advection of all hydrometeor mass bins. The findings of this work support the hypothesis that cloud microphysical simulation is more sensitive to the choice of microphysics than to the choice of advection schemes, thereby justifying the use of computationally efficient lower-order linear schemes.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7sx6hrx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:12:05.846221

Metadata language

eng; USA