Identification

Title

Eddy-modified iron, light, and phytoplankton cell division rates in the simulated Southern Ocean

Abstract

We examine the effects of Southern Ocean eddies on phytoplankton cell division rates in a global, multiyear, eddy-resolving, 3-D ocean simulation of the Community Earth System Model. We first identify and track eddies in the simulation and validate their distribution and demographics against observed eddy trajectory characteristics. Next, we examine how simulated cyclones and anticyclones differentially modify iron, light, and ultimately population-specific cell division rates. We use an eddy-centric, depth-averaged framework to explicitly examine the dynamics of the phytoplankton population across the entire water column within an eddy. We find that population-averaged iron availability is elevated in anticyclones throughout the year. The dominant mechanism responsible for vertically transporting iron from depth in anticyclones is eddy-induced Ekman upwelling. During winter, in regions with deep climatological mixed layer depths, anticyclones also induce anomalously deep mixed layer depths, which further supply new iron from depth via an increased upward mixing flux. However, this additional contribution comes at the price of deteriorating light availability as biomass is distributed deeper in the water column. Therefore, even though population-averaged specific division rates are elevated in Southern Ocean anticyclones throughout most of the year, in the winter, severe light stress can dominate relieved iron stress and lead to depressed division rates in some anticyclones, particularly in the deep mixing South Pacific Antarctic Circumpolar Current. The opposite is true in cyclones, which exhibit a consistently symmetric physical and biogeochemical response relative to anticyclones.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7gq7206

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-06-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:18:38.388585

Metadata language

eng; USA