Identification

Title

Forecasts covering one month using a cut-cell model

Abstract

This paper investigates the impact and potential use of the cut-cell vertical discretisation for forecasts covering five days and climate simulations. A first indication of the usefulness of this new method is obtained by a set of five-day forecasts, covering January 1989 with six forecasts. The model area was chosen to include much of Asia, the Himalayas and Australia. The cut-cell model LMZ (Lokal Modell with z-coordinates) provides a much more accurate representation of mountains on model forecasts than the terrain-following coordinate used for comparison. Therefore we are in particular interested in potential forecast improvements in the target area downwind of the Himalayas, over southeastern China, Korea and Japan. The LMZ has previously been tested extensively for one-day forecasts on a European area. Following indications of a reduced temperature error for the short forecasts, this paper investigates the model error for five days in an area influenced by strong orography. The forecasts indicated a strong impact of the cut-cell discretisation on forecast quality. The cut-cell model is available only for an older (2003) version of the model LM (Lokal Modell). It was compared using a control model differing by the use of the terrain-following coordinate only. The cut-cell model improved the precipitation forecasts of this old control model everywhere by a large margin. An improved, more transferable version of the terrain-following model LM has been developed since then under the name CLM (Climate version of the Lokal Modell). The CLM has been used and tested in all climates, while the LM was used for small areas in higher latitudes. The precipitation forecasts of the cut-cell model were compared also to the CLM. As the cut-cell model LMZ did not incorporate the developments for CLM since 2003, the precipitation forecast of the CLM was not improved in all aspects. However, for the target area downstream of the Himalayas, the cut-cell model considerably improved the prediction of the monthly precipitation forecast even in comparison with the modern CLM version. The cut-cell discretisation seems to improve in particular the localisation of precipitation, while the improvements leading from LM to CLM had a positive effect mainly on amplitude.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sf2x2k

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-07-03T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:20:46.006520

Metadata language

eng; USA