Identification

Title

Quantifying nitrous acid formation mechanisms using measured vertical profiles during the CalNex 2010 campaign and 1D column modeling

Abstract

Nitrous acid (HONO) is an important radical precursor that can impact secondary pollutant levels, especially in urban environments. Due to uncertainties in its heterogeneous formation mechanisms, models often under predict HONO concentrations. A number of heterogeneous sources at the ground have been proposed but there is no consensus about which play a significant role in the urban boundary layer. We present a new one-dimensional chemistry and transport model which performs surface chemistry based on molecular collisions and chemical conversion, allowing us to add detailed HONO formation chemistry at the ground. We conducted model runs for the 2010 CalNex campaign, finding good agreement with observations for key species such as O3, NOx, and HOx. With the ground sources implemented, the model captures the diurnal and vertical profile of the HONO observations. Primary HOx production from HONO photolysis is 2–3 times more important than O3 or HCHO photolysis at mid-day, below 10 m. The HONO concentration, and its contribution to HOx, decreases quickly with altitude. Heterogeneous chemistry at the ground provided a HONO source of 2.5 × 1011 molecules cm−2 s−1 during the day and 5 × 1010 molecules cm−2 s−1 at night. The night time source was dominated by NO2 hydrolysis. During the day, photolysis of surface HNO3/nitrate contributed 45%–60% and photo-enhanced conversion of NO2 contributed 20%–45%. Sensitivity studies addressing the uncertainties in both photolytic mechanisms show that, while the relative contribution of either source can vary, HNO3/nitrate is required to produce a surface HONO source that is strong enough to explain observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pr80db

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-07-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:16:05.873926

Metadata language

eng; USA