Identification

Title

Impact assessment of simulated Doppler wind lidars with a multivariate variational assimilation in the tropics

Abstract

This paper deals with the dynamical aspect of variational data assimilation in the tropics and the role of the background-error covariances in the observing system simulation experiments for the tropics. The study uses a model that describes the horizontal structure of the potential temperature and wind fields in regions of deep tropical convection. The assimilation method is three- and four-dimensional variational data assimilation. The background-error covariance model for the assimilation is a multivariate model that includes the mass-wind couplings representative of equatorial inertio-gravity modes and equatorial Kelvin and mixed Rossby-gravity modes in addition to those representative of balanced equatorial Rossby waves. Spectra of the background errors based on these waves are derived from the tropical forecast errors of the European Centre for Medium-Range Weather Forecasts (ECMWF) model. Tropical mass-wind (im)balances are illustrated by studying the potential impact of the spaceborne Doppler wind lidar (DWL) Atmospheric Dynamic Mission (ADM)-Aeolus, which measures horizontal line-of-sight (LOS) wind components. Several scenarios with two DWLs of ADM-Aeolus type are compared under different flow conditions and using different assumptions about the quality of the background-error covariances. Results of three-dimensional variational data assimilation (3DVAR) illustrate the inefficiency of multivariate assimilation in the tropics. The consequence for the assimilation of LOS winds is that the missing part of the wind vector can hardly be reconstructed from the mass-field observations and applied balances as in the case of the midlatitudes. Results of four-dimensional variational data assimilation (4DVAR) show that for large-scale tropical conditions and using reliable background-error statistics, differences among various DWL scenarios are not large. As the background-error covariances becomes less reliable, horizontal scales become smaller and the flow becomes less zonal, the importance of obtaining information about the wind vector increases. The added value of another DWL satellite increases as the quality of the background-error covariances deteriorates and it can be more than twice as large as in the case of reliable covariances.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tb187v

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:26:05.477817

Metadata language

eng; USA