Dependence of snow gauge collection efficiency on snowflake characteristics
Accurate snowfall measurements are critical for a wide variety of research fields, including snowpack monitoring, climate variability, and hydrological applications. It has been recognized that systematic errors in snowfall measurements are often observed as a result of the gauge geometry and the weather conditions. The goal of this study is to understand better the scatter in the snowfall precipitation rate measured by a gauge. To address this issue, field observations and numerical simulations were carried out. First, a theoretical study using finite-element modeling was used to simulate the flow around the gauge. The snowflake trajectories were investigated using a Lagrangian model, and the derived flow field was used to compute a theoretical collection efficiency for different types of snowflakes. Second, field observations were undertaken to determine how different types, shapes, and sizes of snowflakes are collected inside a Geonor, Inc., precipitation gauge. The results show that the collection efficiency is influenced by the type of snowflakes as well as by their size distribution. Different types of snowflakes, which fall at different terminal velocities, interact differently with the airflow around the gauge. Fast-falling snowflakes are more efficiently collected by the gauge than slow-falling ones. The correction factor used to correct the data for the wind speed is improved by adding a parameter for each type of snowflake. The results show that accurate measure of snow depends on the wind speed as well as the type of snowflake observed during a snowstorm.
document
http://n2t.net/ark:/85065/d76t0n95
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2012-04-01T00:00:00Z
Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:46:47.463878