Identification

Title

Advances in permafrost representation: Biophysical processes in Earth System Models and the role of offline models

Abstract

<p>Permafrost is undergoing rapid changes due to climate warming, potentially exposing a vast reservoir of carbon to be released to the atmosphere, causing a positive feedback cycle. Despite the importance of this feedback, its specifics remain poorly constrained, because representing permafrost dynamics still poses a significant challenge for Earth System Models (ESMs). This review assesses the current state of permafrost representation in land surface models (LSMs) used in ESMs and offline permafrost models, highlighting both the progress made and the remaining gaps.</p><p>We identify several key physical processes crucial for permafrost dynamics, including soil thermal regimes, freeze–thaw cycles, and soil hydrology, which are underrepresented in many models. While some LSMs have advanced significantly in incorporating these processes, others lack fundamental elements such as latent heat of freeze–thaw, deep soil columns, and Arctic vegetation dynamics. Offline permafrost models provide valuable insights, offering detailed process testing and aiding the prioritization of improvements in coupled LSMs.&nbsp;</p><p>Our analysis reveals that while significant progress has been made in incorporating permafrost-related processes into coupled LSMs, many small-scale processes crucial for permafrost dynamics remain underrepresented. This is particularly important for capturing the complex interactions between physical and biogeochemical processes required to model permafrost carbon dynamics. We recommend leveraging advancements from offline permafrost models and progressively integrating them into LSMs, while recognizing the computational and technical challenges that may arise in coupled simulations. We highlight the importance of enhancing the representation of physical processes, including through improvements in model resolution and complexity, as this is a fundamental precursor to accurately incorporate biogeochemical processes and capture the permafrost carbon feedback.</p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7xk8kz0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:46:53.760308

Metadata language

eng; USA