Identification

Title

Evaluation of NOAA national water model parameter calibration in semi-arid environments prone to channel infiltration

Abstract

The NOAA National Water Model (NWM), maintained and executed by the NOAA National Weather Service (NWS) Office of Water Prediction, provides operational hydrological guidance throughout the contiguous United States. Based on the WRF-Hydro model architecture developed by the National Center for Atmospheric Research (NCAR), the NWM was recently modified for semiarid domains, by permitting it to explicitly resolve infiltration from ephemeral channels into the underlying channel bed as an added model sink term. To analyze the added value of channel infiltration in semiarid environments, we calibrated NWM v2.1 (with the channel infiltration function) to 56 independent basins in the western CONUS, following identical calibration methods as the preoperational NWM v2.1 (not including channel infiltration). Calibration of the model consists of two parts, including 1) calibration of channel infiltration only with other parameters set to the calibrated parameters used for preoperational NWM v2.1 and 2) calibration of all parameters including channel infiltration with settings otherwise equivalent to the calibration of NWM v2.1. The calibrated channelinfiltration enhanced NWM improves predictive skill compared to the control NWM in 85% of evaluated basins, for the calibration period. The current NWM settings for physical processes and the biases of the calibration scheme limit model performance in semiarid environments. To explore whether channel infiltration paired with an alternative calibration scheme could address these limitations, NWM v2.1 was calibrated with a new objective function in selected basins. We found that this updated objective function could ameliorate model biases in some semiarid environments.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7vh5scd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:34:14.446023

Metadata language

eng; USA