Identification

Title

Identification of tower-wake distortions using sonic anemometer and lidar measurements

Abstract

The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairs of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first-and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. However, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tf004v

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-02-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:10:54.608296

Metadata language

eng; USA