Identification

Title

Improvement of the temperature and moisture retrievals in the lower troposphere using AIRS and GPS radio occultation measurements

Abstract

Accurate temperature and water vapor profiles in the middle and lower troposphere (LT) are crucial for understanding the water cycle, cloud systems, and energy balance. Global positioning system (GPS) radio occultation (RO) is the first technique that can provide a high-vertical-resolution all-weather refractivity profile, which is a function of pressure, temperature, and moisture. However, in the moist LT over the Tropics, the refractivity retrievals from GPS RO data are often significantly negatively biased because of tracking errors and propagation effects related to sharp vertical moisture gradients that may result in superrefraction (SR). The Atmospheric Infrared Sounder (AIRS) is a nadir-viewing sounder that can measure vertical temperature and moisture profiles with about 1 - 2-km vertical resolution. However, AIRS observations cannot usually obtain accurate temperature and water vapor profiles in the planetary boundary layer (PBL) because of the poor resolving power in the LT. This study uses simulations based on radiosonde profiles by combining the AIRS and the GPS RO measurements to obtain the best temperature and moisture retrievals in the LT. Different approaches are used for the drier LT and the moist LT. For the drier LT, where GPS RO data are not affected by SR errors, a multivariable regression algorithm for inverting the combined AIRS and GPS RO measurements is used. In the moist LT (e.g., SR on top of PBL), the combined AIRS and GPS RO regression inversion above the LT is used as the first guess for AIRS-only physical retrieval, which is extended into the LT. The results show that combining AIRS and GPS RO data effectively constrains the individual solutions, and therefore significantly improves inversion results. The algorithm is also applied for all available radiosonde profiles (19 profiles) over a 1-month period from the site characterized by strong SR on top of the PBL. Retrieved temperature and water vapor profiles yield unbiased low-resolution refractivity profiles in the PBL.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7zk5gt4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:38:40.229103

Metadata language

eng; USA