Identification

Title

Impact of changes in climate and halocarbons on recent lower stratosphere ozone and temperature trends

Abstract

The primary focus of this paper is the analysis of the roles of long-term increases in carbon dioxide (CO₂) and sea surface temperatures (used as indicators of climate change) and man-made halocarbons (indicators of chemical ozone depletion linked to halogens) in explaining the observed trend of ozone in the tropical lower stratosphere and implications for related variables including temperature and tropopause height. Published estimates indicate a decrease of approximately 10% in observed ozone concentrations in this region between 1979 and 2005. Using a coupled chemistry-climate atmosphere model forced by observed sea surface temperatures and surface concentrations of long-lived greenhouse gases and halocarbons, the authors show that the simulations display substantial decreases in tropical ozone that compare well in both latitudinal and vertical structure with those observed. Based on sensitivity simulations, the analysis indicates that the decreases in the lower stratospheric (85-50 hPa) tropical ozone distribution are mostly associated with increases in CO₂ and sea surface temperatures, in contrast to those at higher latitudes, which are largely driven by halocarbon increases. Factors influencing temperature trends and tropopause heights in this region are also probed. It is shown that the modeled temperature trends in the lower tropical stratosphere are also associated with increases in CO2 and sea surface temperatures. Following the analysis of lower stratospheric tropical temperature trends, the secondary focus of this paper is on related changes in tropopause height. Much of the simulated tropopause rise in the tropical zone as measured by tropopause height is found to be linked to increases in sea surface temperatures and CO₂, while increases in halocarbons dominate the tropopause height changes in the subtropics near 30°; both drivers thus affect different regions of the simulated changes in the position of the tropopause. Finally, it is shown that halocarbon increases dominate the changes in the width of the region where modeled total ozone displays tropical character (as indicated by low values of the column abundance). Hence the findings suggest that climate changes and halocarbon changes make different contributions to different metrics used to characterize tropical change.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70r9q7z

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:45:49.120977

Metadata language

eng; USA