Identification

Title

Numerical modeling of the global changes to the thermosphere and ionosphere from the dissipation of gravity waves from deep convection

Abstract

During the minimum of solar cycles 23-24, the Sun was extremely quiet; however, tropospheric deep convection was strong and active. In this paper, we model the gravity waves (GWs) excited by deep convective plumes globally during 15-27 June in 2009 and in 2000 (previous solar maximum). We ray trace the GWs into the thermosphere and calculate the body force/heatings which result where they dissipate. We input these force/heatings into a global dynamical model and study the neutral and plasma changes that result. The body forces induce horizontal wind (inline image) and temperature (T') perturbations, while the heatings primarily induce T'. We find that the forces create much larger T' than the heatings. inline image consists of clockwise and counterclockwise circulations and "jet"-like winds that are highly correlated with deep convection, with inline image∼50–200m/s. inline image and T′ are much larger during 2009 than 2000. inline image decreases slightly (significantly) with altitude from z ~150 to 400 km during 2009 (2000). T' perturbations at z=350km primarily propagate westward at ~460 m/s, consistent with migrating tides. It was found that planetary-scale diurnal and semidiurnal tides are generated in situ in the thermosphere, with amplitudes ~10-40m/s at z=250 km. The largest-amplitude in situ tides are DW1, D0, DW2, SW2, SW3, and SW5. Smaller-amplitude in situ tides are S0, SE2, and SW3. Total electron content (TEC') perturbations of 1-2.5 (2-3.5) total electron content units (TECU, where 1 TECU = 1016 el m−2) during 2009 (2000) are created in the upper atmosphere above nearby regions of deep tropical convection. For a given local time (LT), there are 2 to 3 TEC' peaks in longitude around the Earth.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7n87bsw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:06:08.660251

Metadata language

eng; USA